

Owner: Hi-Con ApS
No.: MD-25176-EN
Issued: 10-10-2025
Valid to: 10-10-2030

3rd PARTY **VERIFIED**

EPD

VERIFIED ENVIRONMENTAL PRODUCT DECLARATION | ISO 14025 & EN 15804

Owner of declaration

Hi-Con ApS. Hjallerup Erhvervspark 1 9320 Hjallerup, Denmark. VAT: 26020387

Year of production site data (A3)

2025

EPD version

Programme Lepddanmark EPD Danmark www.epddanmark.dk ☐ Industry EPD ☐ Product specific □ Product EPD □ Average ☐ Worst Case Declared product(s) 1 m³ precast ultra high strength concrete staircase Number of declared datasets/product variations: 1 **Production site** Hi-Con ApS. Hjallerup Erhvervspark 1 9320 Hjallerup, Denmark. **Use of Guarantees of Origin** \square Electricity covered by GoO ☐ Biogas covered by GoO Declared/ functional unit 1 m³ precast reinforced concrete staircase (without staircase railings)

Issued: 10-10-2025

Valid to: 10-10-2030

Basis of calculation

This EPD is developed and verified in accordance with the European standard EN 15804+A2.

Comparability

EPDs of construction products may not be comparable if they do not comply with the requirements in EN 15804. EPD data may not be comparable if the datasets used are not developed in accordance with EN 15804 and if the background systems are not based on the same database.

Validity

This EPD has been verified in accordance with ISO 14025 and is valid for 5 years from the date of issue.

Use

The intended use of an EPD is to communicate scientifically based environmental information for construction products, for the purpose of assessing the environmental performance of buildings.

EPD type

CEN standard EN	15804	serves	as the	core	PCR
Independent ver data, acco					and

⋈ external

Third	party	verifier:

□ internal

Mie Ostenfeldt

Ostenfeldt Consulting

Martha Katrine Sørensen EPD Danmark

Life	Life cycle stages and modules (MD = module not declared)															
	Produc	t		ruction cess		Use					End of life			Beyond the system boundary		
Raw material supply	Transport	Manufacturing	Transport	Installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Re-use, recovery and recycling potential
A1	A2	А3	A4	A5	В1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
X	X	X	ND	ND	ND	ND	ND	MD	ND	ND	ND	X	X	X	X	x

Product information

Product description

The general composition of the ultra high strength concrete recipe for Hi-Con ApS precast staircases is shown in the table below. The values are characteristics to all Hi-Con ApS staircases for which this document is valid. Due to confidentiality reasons, they are specified in ranges and some minor components are not shown.

Material	Weight-% of declared product
Cement	20-30%
Silica fume	5-10%
Sand and gravel	45-55%
Steel reinforcement	5-10%
and fibers	
Others*	<1-5%

*Others represent specified constituents such as superplasticizers. Water is added at mixing, but part of it evaporates and the rest is part of a chemical reaction, leaving no water in the final concrete. Therefore, water is excluded from the above composition table.

The staircases are precast in wooden molds for which the materials: wood, glue, lacquer, screws and bolts are used.

Product packaging:

No packaging materials are used to package the final concrete elements.

Representativity

This declaration, including data collection and the modeled foreground system including results, represents the production of ultra high strength staircases on the production site located in Hjallerup, Denmark. Product specific data including materials for the concrete recipe for the precast staircases, energy consumption and waste generation is based on average values collected over three months of production in 2025. In 2026, once one full year of production with the staircase is available, the results will be revisited.

Background data are based on Managed LCA Content database v. 2025.2 available via LCA for Experts 10.9 and are less than 10 years old. Generally, the background data sets used are of ultra high quality.

The products are manufactured and sold in Denmark. Therefore, a Danish use and EoL scenario is included, and the geographical region covered is Denmark.

Hazardous substances

The product does not contain substances listed in the "Candidate List of Substances of Very High Concern for authorisation"

(http://echa.europa.eu/candidate-list-table)

Product(s) use

All staircases are precast and attached to the wall of buildings. Railing protection is not included in the calculations and results.

Essential characteristics

High strength concrete staircases are covered by European Technical Assessment ETA 17/0330. Declaration of performance according to EU regulation 305/2011 is available for all declared product variations.

Further technical information can be obtained by contacting the manufacturer or on the manufacturer's website:

https://www.hi-con.dk/

Reference Service Life (RSL)

In agreement with the PCR (EN 16757:2022), the RSL is equal to the required service life (ReqSL) of the building in which the concrete staircase is installed. The RSL is 50 years.

Picture of product(s)

Figure 1: Ultra high strength steel reinforced concrete staircase by Hi-Con ApS.

Figure 2: Ultra high strength steel reinforced concrete staircase by Hi-Con ApS.

LCA background

Declared unit

The LCI and LCIA results in this EPD relates to the declared unit of $1 \, \text{m}^3$ reinforced concrete staircase as stated in the table below, which can be scaled to a specific staircase at building level.

Name	Value	Unit
Declared unit	1	m^3
Density	2530	kg/m³
Conversion factor into kg	3,95*10 ⁻⁴	-

Functional unit

Not defined.

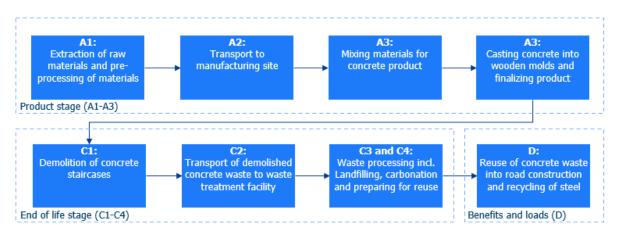
PCR

This EPD is developed according to the core rules for the product category of construction products in EN 15804, and EN 16757:2022.

Energy modelling principles

Foreground system:

No guarantees of origin or certifications are used for green electricity or energy production. For modelling energy production, the Danish residual mix is used, in accordance with the recommendations from EPD Denmark.


Information about the energy mix in the foreground system:

Energy mix	EF	Unit
Residual grid mix	0,7	kg CO₂e/kWh
Natural gas	0,07	kg CO₂e/MJ
District heating	0,07	kg CO₂e/MJ

Background system:

Upstream processes are modelled using residual grid mix. Downstream processes are modelled using consumption mix.

Flowdiagram

System boundary

This EPD is based on a cradle-to-gate LCA, in which 100 weight-% has been accounted for.

The general rules for the exclusion of inputs and outputs follows the requirements in EN 15804, 6.3.5, where the total of neglected input flows per module shall be a maximum of 5 % of energy usage and mass and 1 % of energy usage and mass for unit processes.

Product stage (A1-A3) includes:

- A1 Extraction and processing of raw materials
- A2 Transport to the production site
- A3 Manufacturing processes

The product stage comprises the acquisition of all raw materials, products and energy, transport to the production site, packaging and waste processing up to the "end-of-waste" state or final disposal. The LCA results are declared in aggregated and single form for the product stage, which means, that the sub-modules A1, A2 and A3 are declared as one module A1-A3 and individually.

The raw materials for the concrete recipe are mixed followed by casing and curing into wooden molds. The production of needed ancillary materials such as lubrication and wax for molds are handled by a supplier and a part of the product stage.

No packaging materials are used for the final concrete balconies.

End of Life (C1-C4) includes:

At the End-of-Life stage, the concrete staircases are demolished, and the concrete is excavated (C1). Next, the concrete is transported to the waste processing site (C2) where it is crushed to gravel size and steel is separated and recycled

(C3). This EPD assumes that 97% of the crushed concrete is recycled (D) and the remaining 3% is disposed in landfill (C4). At the disposal of concrete waste on landfill, carbonation in module C4 is considered, complying with EN 16757:2022.

Re-use, recovery and recycling potential (D) includes:

In module (D), the crushed concrete is being used as road filling as a substitution for gravel and reinforcement steel from the concrete substitutes virgin production of steel.

Hi-Con ApS has the ambition to implement several Take-Back options, e.g. where the customer has the option of selling the staircase back to Hi-Con after 50 years. The staircases can then be stored and ideally re-used and undergo an additional life cycle. Since no Hi-Con staircase has reached the End-of-Life phase yet, the Take-Back scheme is not implemented in scale. Therefore, the End-of-Life phase is assessed following a conservative approach.

LCA results

	ENVI	RONMENT	TAL IMPA	CTS PER U	Jitra high s	strength c	oncrete st	aircase [m	ı ³]	
Parameter	Enhed	A1-A3	A1	A2	А3	C1	C2	C3	C4	D
GWP-total	[kg CO2 eq.]	8,20E+02	6,78E+02	9,50E+01	4,72E+01	1,06E+00	1,02E+01	7,79E+00	-3,63E+00	-1,07E+02
GWP-fossil	[kg CO2 eq.]	8,08E+02	6,75E+02	9,30E+01	3,97E+01	1,06E+00	9,79E+00	7,71E+00	-3,63E+00	-1,07E+02
GWP- biogenic	[kg CO2 eq.]	1,09E+01	1,40E+00	2,06E+00	7,47E+00	3,78E-03	4,14E-01	7,92E-02	-4,43E-03	1,13E-01
GWP-luluc	[kg CO2 eq.]	3,81E-01	3,64E-01	6,64E-03	1,03E-02	3,33E-04	1,01E-03	5,83E-03	5,60E-03	-6,21E-02
ODP	[kg CFC 11 eq.]	4,25E-06	4,22E-06	1,17E-11	2,87E-08	4,99E-13	1,51E-12	1,90E-10	3,80E-12	-7,80E-11
AP	[mol H+ eq.]	3,63E+00	2,63E+00	9,63E-01	3,25E-02	4,18E-03	1,34E-02	1,54E-02	9,66E-03	-2,60E-01
EP- freshwater	[kg P eq.]	2,55E-03	2,02E-03	2,37E-05	5,06E-04	8,19E-07	2,47E-06	2,06E-05	2,03E-06	-5,60E-05
EP-marine	[kg N eq.]	6,48E-01	2,59E-01	3,75E-01	1,45E-02	1,60E-03	5,11E-03	5,07E-03	2,53E-03	-6,48E-02
EP-terrestrial	[mol N eq.]	1,09E+01	6,67E+00	4,11E+00	1,45E-01	1,75E-02	5,74E-02	5,60E-02	2,76E-02	-7,01E-01
POCP	[kg NMVOC eq.]	3,11E+00	2,04E+00	1,03E+00	3,69E-02	5,34E-03	1,43E-02	1,27E-02	7,56E-03	-2,13E-01
ADPm1	[kg Sb eq.]	1,47E-03	1,46E-03	2,56E-06	8,55E-07	9,65E-08	2,92E-07	1,49E-06	8,46E-08	-1,79E-06
ADPf1	[MJ]	9,34E+03	7,61E+03	1,19E+03	5,45E+02	4,47E+01	1,35E+02	1,24E+02	1,79E+01	-8,48E+02
WDP1	[m3 world eq. deprived]	5,33E+01	4,59E+01	2,10E-01	7,22E+00	8,48E-03	2,56E-02	1,80E-01	1,48E-01	-1,23E+00
Caption	GWP-total = Global Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidification;									
Disclaimer	1 The results	of this enviro	nmental indica		sed with care perienced with			e results are l	nigh or as ther	e is limited

	ADDITIONAL ENVIRONMENTAL IMPACTS PER Ultra high strength concrete staircase [m³]											
Parameter	Enhed	A1-A3	A1	A2	А3	C1	C2	C3	C4	D		
PM	[Disease incidence]	5,72E-05	3,39E-05	2,31E-05	2,62E-07	5,07E-08	1,44E-07	1,35E-07	1,20E-07	-4,80E-06		
IRP2	[kBq U235 eq.]	8,62E+01	8,56E+01	2,42E-01	3,28E-01	1,06E-02	3,20E-02	8,50E-01	2,11E-02	5,86E-01		
ETP-fw1	[CTUe]	7,05E+03	6,11E+03	8,74E+02	6,83E+01	3,31E+01	1,00E+02	4,92E+01	1,41E+01	-1,55E+02		
HTP-c1	[CTUh]	1,04E-06	1,02E-06	1,34E-08	6,05E-09	5,06E-10	1,53E-09	5,99E-09	2,39E-10	-1,67E-07		
HTP-nc1	[CTUh]	4,21E-05	4,16E-05	2,20E-07	2,95E-07	8,28E-09	2,50E-08	5,44E-08	8,92E-09	-1,45E-07		
SQP1	-	1,43E+04	1,43E+04	5,65E+00	2,98E+01	2,73E-01	8,24E-01	5,35E+01	4,43E+00	4,34E+01		
Caption	PM = Particulate Matt					h; ETP-fw = l n cancer effe			HTP-c = Hum	an toxicity –		
	1 The results of th	is environm				care as the		s on these i	esults are h	nigh or as		
Disclaimer	2 This impact categorial does not consider eff facilities. Potential ior	ects due to p	nly with the e ossible nucle	ventual impa ar accidents,	ct of low dose occupational	e ionizing radi exposure no	iation on hum r due to radio	active waste	disposal in ui	nderground		

		RES	OURCE US	SE PER UIt	ra high str	ength cond	crete stairc	ase [m³]		
Parameter	Enhed	A1-A3	A1	A2	А3	C1	C2	C3	C4	D
PERE	[MJ]	1,96E+03	1,93E+03	7,41E+00	1,88E+01	3,22E-01	9,73E-01	8,41E+01	3,46E+00	1,03E+02
PERM	[MJ]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	[MJ]	1,96E+03	1,93E+03	7,41E+00	1,88E+01	3,22E-01	9,73E-01	8,41E+01	3,46E+00	1,03E+02
PENRE	[MJ]	9,34E+03	7,61E+03	1,19E+03	5,45E+02	4,47E+01	1,35E+02	1,24E+02	1,79E+01	-8,48E+02
PENRM	[MJ]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	[MJ]	9,34E+03	7,61E+03	1,19E+03	5,45E+02	4,47E+01	1,35E+02	1,24E+02	1,79E+01	-8,48E+02
SM	[kg]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	[MJ]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	[MJ]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	[m3]	1,69E+00	1,50E+00	8,42E-03	1,73E-01	3,50E-04	1,06E-03	3,00E-02	4,33E-03	-8,07E-02
Caption	renewak non renev primary e	ole primary enewable primary of the	ergy resources energy excludi es used as rav	y energy excluused as raw m ng non renewa materials; PE e secondary fu	naterials; PER1 Ible primary en NRT = Total u	Γ = Total use of ergy resources se of non rene	f renewable pri s used as raw i wable primary	mary energy romaterials; PEN energy resource	esources; PEN RM = Use of n ces; SM = Use	RE = Use of on renewable of secondary

V	WASTE CATEGORIES AND OUTPUT FLOWS PER Ultra high strength concrete staircase [m³]												
Parameter	Enhed	A1-A3	A1	A2	А3	C1	C2	C3	C4	D			
HWD	[kg]	7,48E-02	7,48E-02	4,34E-08	2,93E-08	1,69E-09	5,12E-09	1,82E-07	3,92E-09	2,89E-07			
NHWD	[kg]	6,74E+01	6,50E+01	1,01E-01	2,30E+00	3,97E-03	1,20E-02	8,47E-02	8,95E+01	-9,26E+01			
RWD	[kg]	2,63E-01	2,59E-01	1,73E-03	2,14E-03	7,47E-05	2,26E-04	8,46E-03	1,90E-04	8,36E-03			
CRU	[kg]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,56E+02	0,00E+00	0,00E+00			
MFR	[kg]	1,47E+00	1,47E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,44E+03	0,00E+00	0,00E+00			
MER	[kg]	5,52E-02	5,52E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
EEE	[MJ]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
EET	[MJ]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
Caption					Materials for				sposed; CRU = I energy; EET				

BIOGENIC CARBON CONTENT PER Ultra high strength concrete staircase [m³]								
Parameter Unit At the factory gate								
Biogenic carbon content in product	[kg C]	0,00E+00						
Biogenic carbon cement in accompanying packaging	[kg C]	0,00E+00						
Note	1 kg biogenic carbon is equivalent to 44/12 kg of CO ₂							

Additional information

LCA interpretation

The raw material extraction and processing (A1) module as well as the transport (A2) are dominating the impact results across all core environmental indicators. This is linked to the production of cement for the concrete recipe for impacts in module A1. For impacts in module A2 it is linked to transport of specific materials from locations far away from Hi-Con ApS' production site.

Technical information on scenarios

End of life (C1-C4)

Scenario information	Value	Unit
Collected separately	2530	kg/m³
Collected with mixed waste	-	kg/m³
For reuse	-	kg/m³
For recycling	2454,1	kg/m³
For energy recovery	-	kg/m³
For final disposal	75,9	kg/m³
Assumptions for scenario development	-	As appropriate

Re-use, recovery and recycling potential (D)

Scenario information/Material	Value	Unit
Crushed concrete for road filling	2184,1	Kg/m³
Recycled steel from steel reinforcement	256*	Kg/m³

^{*}Excluding losses during recycling

Indoor air

The EPD does not give information on release of dangerous substances to indoor air because the horizontal standards on the relevant measurements are not available. Read more in EN15804+A1 chapter 7.4.1.

Soil and water

The EPD does not give information on release of dangerous substances to soil and water because the horizontal standards on the relevant measurements are not available. Read more in EN15804+A1 chapter 7.4.2.

References

Publisher	www.epddanmark.dk Template version 2025.1	
Programme operator	Danish Technological Institute Gregersensvej DK-2630 Taastrup www.teknologisk.dk	
LCA-practitioner	Gritt Cortnum Andersen FORCE Technology Park Allé 345 2605 Brøndby www.forcetechnology.com	
LCA software /background data	LCA for Experts (GaBi) v. 10.9 EN 15804 reference package 3.1	
3 rd party verifier	Mie Ostenfeldt Ostenfeldt Consulting Verified according to Verification Checklist 1 v. 2.9.1	

General programme instructions

General Programme Instructions, version 3.0, spring 2025 www.epddanmark.dk

Technical Rules and Guidelines

Technical Rules and Guidelines, version 1.0, spring 2025 www.epddanmark.dk

EN 15804

DS/EN 15804 + A2:2019 - "Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products" $^{\prime\prime}$

EN 16757

EN 16757:2022 "Sustainability of construction works – Environmental product declarations – Product Category Rules for concrete and concrete elements"

EN 15942

DS/EN 15942:2011 – " Sustainability of construction works – Environmental product declarations – Communication format business-to-business"

ISO 14025

DS/EN ISO 14025:2010 – " Environmental labels and declarations – Type III environmental declarations – Principles and procedures"

ISO 14040

DS/EN ISO 14040:2008 – " Environmental management – Life cycle assessment – Principles and framework"

ISO 14044

DS/EN ISO 14044:2008 – " Environmental management – Life cycle assessment – Requirements and guidelines"